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AhstraeZ. Using a model of random one-dimensional wires, we determine an em1 recursive 
formula for the hansmission pmbability of a Bethe laaice. We use this formula, in numerical 
simulalions. to Rudy the metal-insulator transition. In pxticular. we examine the form of the 
conductance distribution and find thal it does not obey the predictions given in olher studies. 

1. Introdudion 

In a previous paper [I], we calculated the critical exponents of the Anderson metal-insulator 
transition [2, 31 on a network of random wires. The exponents of the transition are an 
important quantity and, as was detailed in that paper, there is still doubt over the actual 
values of these exponents [l,  4, 51. However, in order to study the nature of the Anderson 
transition itself, perhaps the most important quantity to study is the conductance dishibution. 
In particular, is it possible to identify any characteristic behaviour in the conductance 
distribution as the system being studied is driven from the metallic to the insulating regime? 
Above all, what happens to the conductance distribution at, and near, the transition point? 
Detailed theoretical work has been done mainly in one dimension [6, 7, 8, 91 and only 
limited theoretical and numerical work exists in higher dimensions [lo, 11, 121, due to the 
immense technical difficulties involved. 

Because of these difficulties, approximations have to be made. One such approximation 
is to study the conductance on a Bethe lattice [13]. The Bethe lattice can be characterized 
by its connectivity K which is just equal to one less than the number of nearest neighbours 
Z. That is, K = 2 - 1. The Bethe lattice has no closed paths and the number of sites 
on its surface are as numerous as the number inside. An example of a Bethe lattice with 
connectivity K = 2 is shown in figure 1. The numbers by the lattice sites indicate the 
shell of the Bethe lattice, n. So the number of sites, N, in a particular shell is N = K". 
Another property. due to the lack of any ring sbuctures, is that any two points on the lattice 
are connected by only one, unique, path. This absence of ring structures makes theoretical 
studies @actable but prohibits any weak-localization effects and, therefore, the Bethe lattice 
can only serve as an approximation to a real lattice for studying the metal-insulator 
transition. The Bethe lattice is believed to represent a space of infinite dimensionality and, 
therefore, any transition on such a lattice must represent only a mean-field approximation. 

The Bethe lattice was first studied, with reference to the Anderson transition, by Abou- 
Chacra et al in 1973 [14]. They derived an equation for the self-energy which could be 
solved self-consistently, but which was exact on a Bethe lattice. From this they proved the 
existence of localized states at certain disorders and achieved an estimate of the mobility 
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Figure 1. A Bethe lanice of connectivity K = 2. This figure shows only the fin1 four shells of 
the lattice. 

edges. They did not, however, prove that truly extended states exist outside the localized 
energy-disorder regions, nor did they analyse the neighbourhood of the transition. These 
points were given more thorough investigation by Kunz and Souillard in 1983 [U], when 
they showed that a transition from extended to localized wavefunctions did occur on the 
Bethe lattice when the disorder or energy were varied. They claimed their model was 
the first to show the definite existence of an Anderson transition. They also obtained an 
exponent for the divergence of the localization length of U = 1. 

Shapiro 1161 also studied the Bethe lattice, using a model of channels and beam splitters. 
The model defined in this paper is similar to Shapiro’s, in the sense that both make use 
of the scattering matrix formalism. By finding an equation for the retlection of the lattice, 
Shapiro found the existence of a continuous MIT and a value for the conductivity exponent 
o f t  = 1, using an analytic approach. 

Most recently, Chalker and Siak [ 171 studied the Anderson Hamiltonian on a Bethe 
lattice. They found, as expected, a transition between extended eigenstates at weak scattering 
and exponentially localized eigenstates at strong scattering. However, they also emphasized 
that on a Bethe lattice three phases and two transitions exist: the less obvious transition 
being from a power-law-decaying wavefunction to an exponentially decaying wavefunction, 
but with both wavefunctions giving rise to conduction. This is due, principally, to the 
strange geometry of the Bethe lattice, which makes the conditions for normalization of the 
wavefunctions different from that on a ‘normal’ lattice. 

In all these references, it is a criterion for localization which has been sought, hence 
the search for critical disorders or energy. Also, in two of the references the exponents 
were determined, the nature of the Bethe lattice making these calculations tractable. In this 
paper we extend the work of these authors: we study the Bethe lattice numerically for the 
existence of a transition, then we examine the behaviour of the conductance distribution 
around this critical point. 



Conductance distributions 5425 

2. The model 

Consider some initial distribution of random onedimensional wires. These wires can be 
completely described by their scattering matrix S, figure 2. The amplitudes of the input 
and output waves are related by the scattering matrix in the following way: 

(:) =s( ;) 
where 

and lrl. It1 are the reflection and transmission amplitudes respectively and e,, 6, are the 
reflection and transmission phases. This scattering matrix describes a one-dimensional wire 
in the absence of a magnetic field and with no spin-rbit coupling. 

A C 

B D 

Figure 2. The input and output amplifades b m  a onedimensional disordered wire, which are 
related by the scattering matrix. 

Now, to construct a Bethe lattice of connectivity K, we randomly select K wires from 
the distribution. These K wires must then be joined at a single node. In order to perform 
this operation, we attach these K wires to an infinitesimally small piece of perfect wire; that 
is, a piece of wire which is perfectly transmitting. Stage 1 of figure 3 shows this procedure. 
In a previous paper [l], we explained the conditions which must be satisfied at a node where 
several one-dimensional wires are joined. Namely, the amplitude of the waves on each of 
the wires must be the same at the node and the sum of the first derivatives must be zero 
(taking care of the direction) at that node. 

A wave on the ith wire, starting at the node and moving along the wire, will have an 
amplitude 

@i = Ai(1 + ri) (3) 

at the node, because the amplitude of the reverse travelling part of the wave is given by the 
product of the forward-travelling amplitude Ai and the reflection coefficient ri of the wire. 
The amplitude of the wave on the perfect infinitesimally small wire will he 

$K+I  = A K + I ( ~  + r') (4) 

where r' is the new reflection of the junction. Thus the condition of equal amplitudes gives 

@ ] = h = . . . = @ K + ]  ' (5) 
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Stage 1 

Stage 2 

Stage 3 

Figure 3. The first three stages needed to fonn a Bethe lattice with connectivity K = 2. stage 
1 of the recursive procedure is to join WO random wires to an infinitesimally small piece of 
perfect wire. At stage 2, another random wire is anached to the junction formed by stage 1. 
Stage 3 shows lhe new system with reflection r from Lhe end. 

01 

Al(1 +r l )  = A z ( l  + r 2 )  = ... = A K + t ( l  + r ’ ) .  

The current-conservation (first-derivative sum) condition gives 

Al(1 - rl) + Az(1 - r2) + . . . = A K + , ( ~  - r’) (7) 

noting that the direction of the derivative has been reversed for the wave on the infinitesimal 
wire. Again, using the same arguments as in [ l ] ,  the value of the wavenumber is assumed 
to be the same for all waves at the node. The above equation can be written more succinctly 
as 

K 
A ~ + ~ ( l - r ’ ) = C A i ( l - r t ) .  
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Dividing the LHS of this equation by the amplitude of the (K + 1)th wave at the node 
gives 

But, from the amplitude condition (6), 

A X + I ( l + r ’ ) = A i ( l + r ; )  V i e  ( l , K ) ,  

Therefore 

The reflection from the junction, formed by joining K wires together, is 

K 

rt  = (1 - c i=l -) / ( 1  +$-) . 
In order to go from stage 2 to stage 3 of figure 3. another onedimensional wire must 

be attached to the newly formed junction. The new reflection from this object, r ,  will 
involve two terms: a simple reflection from the end of the one-dimensional wire and 
a multiple-scattering term due to reflections from the opposite end of the wire and the 
junction. Including both these terms gives an expression for the reflection r of the system 
shown in stage 3 of figure 3 of 

and since Irk1 and lrl must be less than unity, 

where t ,  is the transmission coefficient of wire 3, r, and r; are the reflection coefficients 
from the left- and right-hand side of wire 3 respectively and r‘ is the reflection of the 
junction, equation (12). Thus, we have determined the reflection from the end of a Bethe 
lattice of size one shell. 

However, examination of the procedure just detailed shows that it can be repeated using 
Bethe lattice sections of arbitrary shell number and a single onedimensional wire, since it is 
only required to know the reflection from the end of the objects being joined. Therefore, it is 
clear that stages I, 2 and 3 of figure 3 show an exact recursive procedure for generating very 
large Bethe lattices. The procedure is successful for the Bethe lattice, since any arbitrarily 
sized Bethe lattice section can be characterized by the reflection from its end (or centre) 
and can therefore replace the one-dimensional wires with reflections rl and rz in stage 1 of 
figure 3. 

So we can calculate the transmission probability (and hence the conductance) of a very 
large Bethe lattice by repeatedly using the above recursive procedure (equations (12) and 
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(14)) and then applying the current-conservation condition ltlZ = 1 - where r is the 
calculated reflection coefficient for that Bethe lattice. The conductance is then trivially 
obtained from the Landauer formula, G = (eZ/(2zh))ltlZ 1181. 

Unfortunately, this procedure proves to be numerically unstable when the reflection 
coefficient of the lattice becomes close to unity. Since a reflection coefficient of unity 
signals the insulating regime, this means that the instability occurs in the region of the 
metal-insulator transition, precisely where we wish to perform our calculations! Therefore, 
we need to find an alternative formulation of the recursive procedure which will give us the 
transmission probability without relying so explicitly on the reflection probability: notice 
that we have to subtract two almost equal numbers which will obviously result in a loss of 
accuracy (irrespective of whether r is unstable or not). 

Consider again the argument we used for joining K branches together at a single node 
by attaching them to a small piece of perfectly transmitting onedimensional wire (see stage 
1 of figure 3). Let each of the branches have reflection rj from the end and a transmission 
coefficient ti. Let Ai he the amplitude of the wave starting at the end of the branch, nearest 
the node. and travelling along it. Then the amplitude of the wave transmitted through the 
ith branch is 

P M Bell and A MacKinnon 

Now, let li) represent the ith branch, through which current is being transmitted. At the 
surface of the lattice, the waves do not interfere since they are spatially separated from one 
another. Hence the l i )  must obey 

li)(il = & j  (15) 

and the total amplitude of all waves, 01, transmitted through the joined branches will be just 

(16) 

If a wave with amplitude A K + I  is fed into the junction formed by joining the K branches 
to the perfect small wire, then the total transmitted current is just 

= (17) 

where If‘!’ is the transmission probability of the junction. Therefore, 

or 

because there is no interference between waves at the surface. Now, equation (IO) can be 
written in the form 

Ai 1 +r‘ 
AK+I  1 +Ti 

- 
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where r‘ is the reflection of the junction. Hence 

With this expression, we  have determined the transmission probability of the junction formed 
by joining K wires together at a single node. But in order for us to form a Bethe lattice, 
a one-dimensional wire must be attached to the junction. Let the wire have transmission 
coefficient fw and a reflection from its RHS of r$ Then the transmission probability through 
the Bethe lattice section Itlz, formed by joining the RHS of the wire to the junction will be 

This expression can be used recursively, in conjunction with equation (12). to determine the 
transmission probability of the Bethe lattice as it grows in size. Notice that we still require 
to calculate the reflection from the junction and use it in the expression for the hansmission 
probability. However, we have altered its rale in the calculation of the transmission and thus 
hopefully increased the stability of the procedure for calculating the transmission probability. 
Also note that we have removed the potentially accuracy-limiting step of subtracting two 
almost equal numbers. Extensive numerical tests on both methods indicated to us that thii 
was indeed the case and for the remainder of this paper, we calculate the transmission 
probabilities of the growing Bethe lattice using equations (12) and (22). 

3. Algorithm 

The equations (12) and (22), which define the exact recursive procedure for calculating the 
transmission probabilities of arbitrarily large Bethe lattices, are useful for two reasons: the 
equations are simple and therefore ideally suited to numerical computation, and by storing 
the relevant variables of a large number of Bethe lattice sections at each step, quantities 
such as the transmission probability (and thus the conductance) distribution can be studied. 

We set up the numerical simulation of a disordered Bethe lattice as follows: define an 
initial array of N disordered one-dimensional wires, forming the distribution of transmission 
probabilities. For the surface of the Bethe lattice we need to choose some boundary 
conditions. In this case it was convenient for us to choose the surface wires (the initial 
distribution) to be perfectly transmitting, so that any particle reaching the surface is lost 
from the system. We then selected a connectivity, K, and a disorder value for all the 
other wires in the lattice. The disorder within the wires was introduced by assuming that 
all the transmission occurs via tunnelling through a single eigenstate in each wire. This 
assumption was justified in [ l ]  and allows us to make use of the Azbel distribution [I91 for 
the transmission amplitude of disordered one-dimensional wires 

the disorder value being defined by the ratio LILO (as is normal in these calculations, we 
also assume phase randomization across the wires). This expression is very simple and is 
thus not wasteful of computing time. 
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Ai 

We can then commence the numerical recursive procedure: select K elements at random 
from the initial array and join these together to form a junction with reflection r' (stage 1 
of figure 3). Next select a single one-dimensional wire and attach it to the junction to form 
a new, larger, Bethe lattice section with reflection r and transmission t (stages 2 and 3 of 
figure 3). Repeat the process N times, to form a new array of larger Bethe lattice sections. 
Once this new array has been constructed, discard the array of the previous generation and 
begin the entire process again. We can represent this procedure in the form of a flow chart, 
figure 4. 

l i  

Select K clemcnlr. from 
dinribution 

loin lhun together to 
form junclion 

wirc to junction 

and uamisrion in 

dunen& in 



Conductance distributions 543 1 

4. Results and analysis 

4.1. Behuviour of T with system size and disorder 

We ran the simulations with array sizes of N = 16384 elements forming the distributions. 
For various disorder values, we calculated three different means: namely, the arithmetic 
mean log(T), the geometric mean (IogT) and the harmonic mean -log(T-'), where 
T = lt12. In all cases we used a connectivity value of K = 2. 

Figure 5 shows the behaviour of these quantities with increasing shell number, for three 
typical cases which we found. For all disorder values up to around 1.70, the means rapidly 
converge to some constant value, see figure 5(a). Above this value, the lines are noticeably 
more noisy and take longer to converge to a constant value. However, above a disorder 
value of 1.80 the means no longer converge to some constant value: the transmission 
probability decreases with increasing system size, figure 5(b). Quite clearly the lattice is in 
an insulating state, since the transmission probability extrapolates to zero at infinite shell 
number. 

So, from the behaviour in these two regimes we predict that an Anderson metal-insulator 
transition must occur at a disorder value somewhere between 1.70 and 1.80. Figure 5(c) 
shows the typical behaviour of the means in this critical region; the data are extremely 
noisy. In particular, from disorders of 1.71 to 1.76 the transmissive behaviour is peculiar: 
it does not seem to settle into any regular type of behaviour. Nevertheless, for disorders 
below 1.76 we removed data for small shell numbers (where we knew the lattices had yet to 
reach their stable states) and used linear regression to fit straight lines through the remainder 
of the points. Using the intercept of the log T as an estimate of the average transmission 
probability, we plotted the graph shown in figure 6. According to MacKinnon [20], plotting 
the logarithm of each of the three calculated means against disorder should show that these 
quantities diverge from each other as the transition is approached from the metallic side. 
Figure 6 shows that this is indeed the case for our model. Near the transition the data points 
have large error bars, but we have not included these on the graph since the general trend 
of the curves is sufficient to emphasize the important behaviour. 

4.2. The localization length 

For high disorder we find that the transmission probability decreases with increasing shell 
number, figure 5(b). Clearly, in this regime a relationship of the form 

log T cx -Cn 

where C is a constant, n is the shell number and log T represents the appropriate mean. 
Now, we know that n represents a length scale on the Bethe lattice since it is the distance 
covered in travelling from the centre to any point on the lattice. Therefore in this regime, 
the transmission probability (and hence the conductance) decays exponentially and C must 
represent the inverse localization length. 

We fitted a straight line through all graphs having the form shown in figure 5, for all 
disorders, and calculated the the negative of the inverse localization lengths. We plot these 
values against the disorder in figure 7. For low disorder the lattice is conducting and the 
localization length must be infinite., hence the inverse localization length must be zero. This 
is clearly seen in figure 7. At high disorder, the inverse localization length grows as the 
disorder increases in a more or less linear fashion. Between these regimes, the msi t ion 
can be clearly identified, occurring at a disorder value near 1.70. 
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Disorder 0.90 

6.0 I. \ I 

Disorder 2.40 

Disorder 1.73 

Figure 5. The logarithmic behaviour of the transmission for three distinct cases. In (a) the 
disorder is weak and the system quickly converges to a constant transmission. For the case 
of strong disorder (b), the transmission no longer reaches a constant value. bi;t decreases 
exponentially. In graph (c) the data are extremely noisy and the infinite lm’ce behaviour is 
not easy to determine. 

Unfortunately, the results of this simulation do not allow us to calculate a critical 
exponent for the transition. In a recent paper MacKinnon [5 ]  confirmed that in order to 
obtain an accurate result for the exponent. it is essential that data must be taken very close 
to the transition point. The data obtained from our simulation are too noisy in this region, 
making any calculation of the exponent meaningless because of the large error which would 
be involved. 
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Figure 6. The logaithmic behaviour of the arithmetic. 
geometric and harmonic means of the transmission of 
the Bethe lattice with increasing disorder. Notice that 
they diverge from one another in the Vansition region. 
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Figure 7. The inverse localization length is plotted 
against disorder, showing a vansition lo localized states 
af a disorder wound 1.7iL1.75. 

There is no evidence in our simulation of a second transition, occurring between power- 
law and exponentially decaying states as predicted by Chalker and Siak [17]. However, 
this is due to the definition of our model: we make no distinction between the character of 
the states which carry the current. The precise form of the states which cany the current 
(which were shown to undergo a transition from power law to exponentially decaying by 
Chalker and Siak) are not of interest in this particular model. However, it is possible that 
this second transition does show up in our model through a change in the statistics of the 
conductance. However, the inevitable fluctuations near the metal-insulator transition are 
probably sufficient to mask this second transition, as is clear in  the next section. 

4.3. The conductance distribution 

We now know from our analysis that the transition from metal to insulator in our model 
occurs at a disorder value near 1.70. This is the region where we want to study the 
conductance distribution in detail. However, it is useful to examine the distribution in 
the strong- and weak-disorder regimes also. In figure 8(a) we show the evolution of the 
distribution of log T with shell number for a disorder value of 1.30. The distributions were 
obtained by generating a histogram from the 16384 array elements. The dishibution maps 
onto itself as the lattice size increases. 

In figure 8(b) the evolution of the log T distribution is shown for high disorder. In 
this regime, the distributions maintain their Gaussian shape as the shell number increases, 
but the entire distribution steadily shifts to smaller and smaller values of the transmission 
probability. 

The behaviour of the distribution in the transition region is shown in figure 9. For 
disorder values from 1.71 to 1.74, the distributions for each shell number are only marginally 
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Figure 8. The behaviour of the logT distributions with shell number for strong and weak 
disorder. In (a) the disorder is weak and the distribution maps onto itself as the Mice size 
increases. In @),however, the disorder is strong and the Gaussian dhvibution shifts with shell 
number to smaller and smaller values of bansmission, while maintaining its shape. 

shifted from one another and they are not shifted in any regular way. For example, the 
disorder value 1.72 shows most clearly that the distributions are slightly shifted from one 
another, but this shift is not systematic: the distribution for lattice size 600 shells is to the 
right of the distribution for 500 shells and the distribution for 400 shells is located closest 
to the origin. That is, they are shifted randomly (probably due to numerical fluctuations). 
But for disorder values above 1.75 the distributions begin to systematically shift to smaller 
values of transmission (corresponding to an increase in the lattice size, in contrast to the 
distributions for disorder 1.72) indicating that the transition has occurred somewhere between 
disorder values 1.74 and 1.75. 

The most interesting feature of the distributions in this region is the form of their tails. 
There is little doubt that the tail on the RHS of the distributions (towards the origin) is longer 
than the tail on the LHS. This indicates that there exists a small, but significant, number of 
branches with transmission probability close to T - 1. 

5. Discussion 

Careful study of the'distributions in the transition region indicates to us that the onset of 
insulating behaviour is signalled by the failure of the RHS tail of the log T distribution to 
reach the origin. Consider again figure 9. At disorder value 1.77, the tail of the distribution 
never reaches the origin and the distribution gradually shifts to the left as its size increases. 
However, for disorder value 1.74 the tail always reaches the origin and the distribution 
remains stationary with shell number. 

Cohen et a1 [ I  I ]  predict that distributions near the transition should be very broad. A 
numerical calculation of the resistance p of three-dimensional samples at the mobility edge 
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Dimrdvr 1.72 

Disorder 1.14 

Figure 9. The behaviour of the logT disbibutions with shell number in the transition region. 
Notice the extended tails on the RHS and notice also thal they fail to reach the origin when the 
disorder reaches 1.75. 
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Figure 9. (Continued) 

Disorder 1.77 
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obtained a distribution of logp with a large tail towards high p .  MarkoB and Kramer [12] 
also calculated the log G distribution for small threedimensional samples. They did not 
detect the long tail predicted by Cohen ef al, but they were constrained by computational 
limitations and could not test large sample sizes. Our distributions do not exhibit tails as 
large as those predicted by Cohen etnl; in fact the tails we find are much smaller. However, 
it is known that their method of calculation severely overestimates fluctuations, while our 
method is exact. But neither do we find distributions of the form found by Markoi! and 
Kramer. Their distributions, in fact, resemble the distributions we find at weak disorder. 

We must urge some caution on our results though. Both these other numerical studies 
were performed on 'real' three-dimensional lattices. Also, we know that our model does 
not reproduce certain features that we might expect to find in real lattices: namely, in the 
metallic regime of threedimensional samples, the conductance distribution (as opposed to 
the logarithm of the conductance) should be Gaussian 1121. When we plot the conductance 
distribution we see only a peak around zero with a long tail towards high values. Changing 
the disorder merely changes the size of the peak and tail. Also, for onedimensional systems 
the variance of the log G distributions is known to scale linearly with the mean for moderate 
disorder [7, 10, 211. This behaviour is expected to hold in higher dimensions, but we see 
no evidence of it. In particular, 5@) clearly shows that the variance remains constant no 
matter what value the mean takes. 

6. Conclusion 

We have studied the metal-insulator transition in detail on a Bethe lattice. In the transition 
region we found that the log T distributions were of Gaussian form, but had a long tail 
towards high values of transmission. For the Bethe lattice, the onset of localization seems 
to be signalled by a failure of this tail to reach the origin of log T .  Once the insulating 
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regime was reached, we found that the distributions maintained their Gaussian shapes with a 
long tail towards high T. Also, in this regime the distributions were found to move towards 
smaller values of T as the lattice was increased in size. 

We have also shown that the distributions do not follow the predictions for regular 
lattices in the metallic regime and for moderately strong disorder. 
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